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A Modi�ed Concatenated Coding Scheme, withApplications to Magnetic Data StorageJohn L. Fan�Dept. of Electrical EngineeringStanford UniversityP.O.Box 2586Stanford, CA 94309-2586jfan@isl.stanford.edu
A. R. CalderbankInformation Sciences CenterAT&T Labs - ResearchMurray Hill, NJ 07974August 21, 1997AbstractWhen block modulation codes are concatenated with an error-correctioncode (ECC) in the standard way, the use of long block lengths results inerror-propagation. This paper analyzes the performance of modi�ed con-catenation, which involves reversing the order of modulation and ECC.This modi�ed scheme reduces error propagation, provides greater exibil-ity in the choice of parameters, and facilitates soft-decision decoding, withlittle or no loss in transmission rate. In particular, examples are presentedwhich show how this technique can allow fewer interleaves per sector inhard disk drives, and permit the use of sophisticated block modulationcodes which are better suited to the channel.Index terms: concatenated codes, Reed-Solomon codes, modulationcodes, magnetic data storage1 IntroductionThis paper is concerned with the interaction between the modulation code andthe error-correcting code (ECC). The idea of modulation is to ensure that thesequence of bits transmitted to the channel satis�es certain properties, which wewill refer to as the modulation constraint. The purpose of the error-correctingcode is to introduce redundancy so that it is possible to correct random errorsin the codeword. Some widely used ECCs are Reed-Solomon codes, where thedata is organized into symbols, and there are well-known e�cient algorithms tocorrect symbols in error. By simply concatenating the modulation code withthe ECC, the overall performance of a system can often be greatly improved.�This work was supported in part by AT&T Bell Laboraties1
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Much of the previous work on combining modulation and ECC has beenconcerned with (d; k) runlength constraints, along with the correction of a bitshift or a single bit error, which addresses the technology of peak-detectionin magnetic recording. A number of these papers ([2][9][13][18][19]) presentcombined modulation and ECC schemes in which the message is �rst modulated,and an appropriate set of modulated parity bits is appended using a systematicencoding algorithm.In this paper, we consider the standard method of concatenation, which wewill refer to as StdConcat, and compare it with a modi�cation which bettersuits the use of block modulation codes in conjunction with ECCs. In [3] and[1], comparisons are made between the use of block codes and sliding window(including convolutional) encoders to implement modulation constraints. Blockcodes perform favorably when the number of bits matches the Reed-Solomonsymbol size, but if the block modulation codes have long blocklengths, thenerror-propagation results. This motivates us to consider a scheme in whichthe message is �rst modulated, and then fed into a systematic RS encoder,which generates parity that is then modulated. This idea, which we refer to asthe modi�ed concatenated coding (ModConcat) scheme, has appeared before inpapers by Bliss [4] and Mansuripur [16]. Recently, Immink [11] has proposedthe insertion of a lossless compression step, which improves the e�ciency of thescheme.We discuss these concatenation schemes in detail, and then present an anal-ysis of error-propagation and decoder performance using the two schemes. Fi-nally, we will consider an application to modulation codes for magnetic record-ing.2 Concatenation SchemesThe modulation code is implemented using a binary block code of rate K=N ,where the modulated blocks (of length N) all satisfy the modulation constraint(such as a constraint on the run-length or on the DC content), and in additionmaintain the constraints when modulation blocks are arbitrarily placed side byside. The modulation code can be described by a look-up table consisting of 2Kwords of N bits.The Reed-Solomon code uses S-bit symbols, can correct up to t symbolerrors, and is encoded with a systematic encoder that takes k message symbolsand appends 2t parity symbols to obtain a codeword of length n = k + 2t.2.1 Standard concatenationThe standard method of concatenated coding �rmly sandwiches the modulationcode between the encoder and decoder for the Reed- Solomon code, as we seein Figure 1. Starting with M message symbols of S bits each, we encode toobtain M + 2t symbols, which are modulated into NK (M + 2t)S bits of datasent through the channel, so the transmission rate is KN MM+2t . (Note that in the2
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RS DecoderCHANNELFigure 1: Standard Concatenated Coding�gures, we omit the details of the interleaving which takes place between theinner and outer codes.)We assume that a single error event in a block of N bits results in theentire block becoming corrupted upon demodulation. Hence a short error onthe channel can propagate into dK=Se symbol errors, and a short error burst onthe boundary of two blocks can even result in d2K=Se symbol errors. To reducethis error-propagation, it makes sense to choose K to match the symbol size S,so that we would want K to be an integral multiple of S. To avoid this errorpropagation due to demodulation, it would be ideal to choose K = S , but thisseverely restricts the type of modulation code we can use.For the same modulation constraint, let us suppose we have two suitablemodulation codes C1 and C2: The �rst modulation code C1 has rate K1N1 , wherethe block length are long so that K1 > S. The second modulation code C2has rate K2N2 , where K2 = S to avoid error-propagation. We would prefer touse a code like C1, which has a longer block length and hence a higher rate(K1N1 > K2N2 ). But since C1 magni�es errors by a factor of K1=S, it is often thecase that a code like C2, with K2 = S, is used in practice.2.2 Modi�ed concatenationIn standard concatenation, the demodulation step leads to error-propagationso it is desirable to delay demodulation until after the Reed-Solomon decoder,where the data which is almost entirely error-free. By reversing the order of themodulation and error-correcting codes, it will be possible to use a modulationcode with long block length.In the top half of Figure 2, we depict the modi�ed concatenated codingscheme, which may be attributed to Bliss [4]. The number of user symbolsM can be freely chosen, but for comparison, let us choose M to be the sameas in StdConcat. Starting with M user symbols of S bits each, we modulatethese into N1K1MS bits using code C1, and transmit these over the channel.Meanwhile, we pass these modulated messages into a systematic Reed-Solomonencoder that adds 2t parity-check symbols, for a total of N1K1M + 2t symbolsin the RS codeword. The parity symbols need to be modulated before beingsent to the channel, and to avoid error-propagation, we will use the code C2,with rate K2=N2, giving a total of (N1K1M+ N2K2 2t)S bits transmitted through thechannel. This is fairly close to the N1K1 (M + 2t)S channel bits using StdConcatwith code C1, and is much smaller than the N2K2 (M +2t)S bits using StdConcatwith code C2.No error-propagation has taken place on the message bits, so that the code3
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Figure 2: Modi�ed Concatenated CodingC1 can have arbitrary block lengths, and in particular,K1 and S need not match.Also, no error propagation takes place on the parity portion since we are usingcode C2 which has K2 = S. Moreover, all the data reaching the channel satis�esthe modulation constraint, and the rate is very close to the rate of C1. Figure 3illustrates how ModConcat can be successfully used in cases where StdConcatwould lead to decoder overow due to error-propagation with a code like C1.On the other hand, this method su�ers from an expansion of the input to theReed-Solomon code. We have k0 = N1K1M and n0 = N1K1M+2t for ModConcat, sothere is an � = N1K1 > 1 increase in the input to the RS decoder, and a factor ofn0n = �M+2tM+2t � � increase in the codeword length, as compared with StdConcatusing code C1. Some problems are that the complexity of RS decoding roughlyincreases linearly by �, and the length of Reed-Solomon codewords is limited(n0 < 2S). In addition, very long error bursts are not demodulated, so thatrelative to StdConcat, ModConcat expands long error bursts by �. In otherwords, if we ignore error-propagation e�ects, then a bit burst of length LS onthe channel a�ects roughly L symbols in ModConcat, but only K1N1 LS = 1�L usingStdConcat.2.3 Lossless compressionIn [11], Immink considers this problem and proposes a method to reduce thisexpansion factor �. The idea is to introduce a block code of rate Kc=Nc whichacts as a lossless compression scheme (taking Nc bits to Kc bits) and is placedbefore the Reed-Solomon encoder and the decoder, as shown in the bottom half4
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Figure 3: A Comparison of the Concatenation Schemesof Figure 2. Since the compression step takes place before RS decoding, we needto chooseKc = S to avoid error propagation. The expansion factor � is reducedto N1K1 KcNc , and Immink's lossless compression alleviates the problems associatedwith using modi�ed concatenation where K1N1 is not close to 1.TheNc-bit sequences which are valid inputs to the block compression schememust include all the possible outputs of the modulation scheme. To understandbetter the requirements of this lossless compression block code, it will helpto take a closer look at modulation using block codes. Let the set Constrconsist of all bi-in�nite sequences of bits which satisfy the modulation constraint.The capacity of the constraint is the maximum number of information bits perchannel bit that can be acheived while satisfying this constraint, and is givenby limn!1 1n log2Wn, where Wn is the number of constrained sequences of lengthn. The idea of block modulation is to use an encoder that takes K bit to Nbits, such that the output bitstream satis�es the constraints. In other words,the desired block code corresponds to a 1-1 map' : f0; 1gK ! f0; 1gNwhere any combination of words in the image of ' will satisfy the modula-tion constraint. Let Im' be the image of the mapping ', and (Im')1 =f(:::; w�1; w0; w1; :::) j wi 2 Im' � f0; 1gNg. Then a modulation block codesatis�es: 5
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Modulation: (Im')1 � ConstrIn other words, any bi-in�nite sequence of bits consisting of blocks of length Nin the image of ' will satisfy the modulation constraint. The rate K=N will beless than or equal to the capacity of the modulation constraint.Now, for lossless compression, we need to �nd a 1-1 map : f0; 1gKc ! f0; 1gNcsuch that the image contains all possible sequences that can appear in the outputof the modulation code. In other words, we want a map  such that:(Im )1 � (Im')1The map  �1, restricted to Im , gives a lossless compression map, and themap  gives the decompression. This mapping  de�nes a block code of rateKc=Nc. Note that it is clear that Kc=Nc � K=N , since we cannot compressa code smaller than its original size. For a given modulation constraint, itmay be appropriate to develop block compression codes in conjunction with themodulation code. For example, it might make sense for N to be an integermultiple of Nc.But since the modulation code C1 is assumed to be su�ciently long to makethe rate close to the capacity of the constraint, it is often reasonable to assumethe compression scheme to handle all possible valid constrained sequences, sowe would want Compression: (Im )1 � ConstrIn this sense, there is a certain duality between the concepts of block modulationand block compression.3 Analysis of performanceWe recall that using standard correction techniques, the Reed-Solomon decoderdecodes the received word to a codeword lying within Hamming distance t, ifsuch a codeword exists. In the usual terminology (ref. [25]), when no codewordexists within distance t, this detectable malfunction is called decoder failure.If the decoder outputs a wrong decision because the received word lies withindistance t of the wrong codeword, this event is called decoder error. In thissection, we will simply measure performance by the probability of having morethan t symbol errors in a received word. This is the sum of decoder failure rateand the decoder error rate, which we will denote by Pdecoder.We �rst consider the case where the bit errors are independent, and inter-leaving is su�cient to separate bursts of symbol errors. Then we take a closerlook at the process of error propagation, and �nally consider the case wherebursts lengths exceed the interleave depth.6
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3.1 Decoder performance, with independent errorsFirst we consider a Reed-Solomon decoder where the symbol errors occur in-dependently, which is also the case if the bursts are su�ciently dispersed byinterleaving. With independent errors, the expected number of errors is bino-mially distributed, with the probability of having a errors given by �na�p :=�na�pa(1� p)n�a, where p is the symbol error rate. The probability of a decodererror or decoder failure is then given byPdecoder(n; t; p) = nXi=t+1�ni�p = nXi=t+1�ni�pi(1� p)n�i (1)for a t-error-correcting RS decoder. For small p and large n, this summationis dominated by the �rst term � nt+1�p, and the Poisson approximation to thebinomial distribution, �na�p � e�np (np)aa! � (np)aa! , gives a rough estimate ofperformance.We can then compare the performance of the two concatenation methodsusing code C1 given that the errors are single bit errors occuring independentlywith probability b. For StdConcat, an error bit in any of N1 bits in a block cancorrupt the block, and the probability of symbol error is equal to the block errorprobability pstdsymbol = pstdblock = N1b. (We assume that interleaving has dispersedthe burst of K1S symbol errors that occur when a block is in error.) On theother hand, for ModConcat, each of S bits can cause a symbol to be in error,so pmodsymbol = Sb. Hence for independent errors, the symbol error probabilitiesp = pstdsymbol and p0 = pmodsymbol are related byp0 � SN1 p (2)Now if we assume the same amount of user data per codeword, then we needto increase the code length for ModConcat to n0 = N1K1 (n � 2t) + 2t � N1K1n.We can then use the Poisson approximation to compare the performance ofStdConcat and ModConcat as follows:Pmoddecoder � � n0t+ 1�p0 � 1(t+ 1)! �(N1K1n)( SN1 p)�t+1� ( SK1 )(t+1)� nt+ 1�p � ( SK1 )(t+1)P stddecoder (3)This rough calculation indicates that the amount which ModConcat can beexpected to perform better than StdConcat depends on the ratio S=K1 and thestrength of the RS decoder.It is interesting to note that if we consider ModConcat with a losslesscompression scheme, the result does not change. For a lossless compression7
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block code of rate Kc=Nc and Kc = S, we get pmodsymbol = NcKcSb = Ncb. Also,n0 � �n = KcNc N1K1n, so we end up with the same approximate relationship:Pmoddecoder � 1(t+ 1)! �(KcNc N1K1n)(NcN1 p)�t+1� ( SK1 )(t+1)P stddecoder3.2 Error propagationFor standard concatenation, let us examine the number of block errors causedby demodulating a burst of error bits with a block code of rate K=N . A singlebit in error a�ects one block. Two adjacent bits in error have a N�1N chance ofcausing one block error and a 1N chance of overlapping two blocks. overlappingtwo blocks. Given non-negative integers a and b, de�ne m(a; b) by 0 � m(a; b) �b � 1 and m(a; b) � a (mod b). Then in general, a burst of length L bitshas a probability m(L�1;N)N of causing � LN � + 1 block errors and probability1� m(L�1;N)N of causing � LN � + 2 block errors. (In the middle of a burst theremay be bits not in error, but we assume that the burst begins and ends witherror bits, and there are enough error bits in between to cause a contiguousburst of block errors.)Let bL denote the probability of observing a burst error of length L, whichwe �nd by taking the number of bursts of length L and dividing by the totalnumber of bits. The bit error distribution is then described by fbig and theaverage bit error rate is b =P ibi. It is reasonable to assume that the locationsof the burst errors are uniformly distributed in the block, and that for a blockof N channel bits long, there are N chances that it contains the start of a bursterror. As for the number of blocks a�ected, we argue that a burst of lengthL has a probability m(L�1;N)N of causing � LN � + 1 block errors and probability1 � m(L�1;N)N of causing � LN � + 2 block errors, and that the e�ect of bursts ofdi�erent lengths is additive. (Note that by our convention, if two bursts overlap,then they are counted as a single burst.)Then we have the following expression for pblock(m), the probability that aparticular block is the start of a burst of m consecutive blocks in error:pstdblock(1) = N(b1 + b2N � 1N + b3N � 2N + � � �+ bN 1N )pstdblock(m) = NXi=2 b(m�2)N+i(i� 1) + NXi=1 b(m�1)N+i(N � i+ 1)If we use a generating function to express the error distribution b(z) =Pi=1 bizi,then we have the compact expression:pstdblock(m) = (�N (z)b(z))(1+(m�1)N) (4)8
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where �N (z) is a triangular function�N (z) = z�(N�1)+2z�(N�2)+ � � �+(N � 1)z�1+N +(N � 1)z+ � � �+ z(N�1)and the subscript indicates we are taking the coe�cient of z1+(m�1)N in theproduct �N (z)b(z)).3.2.1 Standard ConcatenationFor StdConcat with C1, we havepstdblock(m) = (�N1(z)b(z))(1+(m�1)N1)and since a block error causes K1S symbol errors (where we will assume forsimplicity that K1 is a multiple of S), the probability that a symbol is the startof a burst of m symbol errors ispstdsymbol(m) = pstdblock( m(K1=S)) if m is a multiple of K1=S (5)pstdsymbol(m) = 0 otherwiseIn terms of generating functions, we havepstdsymbol(z) = pstdblock(zK1=S):3.2.2 Modi�ed ConcatenationFor simplicity, we will only look at error propagation in the message, since thefraction of parity bits is small, and there is limited error propogation because ofthe code C2 ( where K2 = S) that modulates parity bits. If we assume that alossless compression code of rate Kc=Nc is used (where Kc = S), then we obtainthe following symbol error distribution in terms of b(z):pmodsymbol(m) = (�Nc(z)b(z))(1+(m�1)Nc) (6)= NcXi=2 b(m�2)Nc+i(i� 1) + NcXi=1 b(m�1)Nc+i(Nc � i+ 1)(In the case that there is no lossless compression step, simply let Nc = S.)3.3 Decoder performance, with burst errorsThe Reed-Solomon codewords are usually interleaved to reduce the possibilitythat a single burst error leads to multiple symbol errors in the same codeword.Let us assume that the interleave depth is ID. Then a burst of L symbolshas a probability of 1 � m(L;ID)ID causing � LID � error(s) in an interleave andprobability of m(L;ID)ID of causing � LID � error(s) in an interleave. Hence, if p(m)9
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is the probability, before interleaving, of a symbol burst of length m, then wecan evaluate the probability q(m) of a burst of length m after interleaving byq(m) = (�ID(z)p(z))mID (7)where we use the generating function p(z) = Pm=1 p(m)zm and the same tri-angular function as before. Note that the average symbol error rate stays thesame (Pmq(m) =Pmp(m)).In particular, the probabilities of single errors (q1) and double errors (q2)after interleaving areq1 = p(1) + 2p(2) + � � �+ ID � p(ID) + � � �+ p(2ID � 1) (8)q2 = p(ID + 1) + 2p(ID + 2) + � � �+ ID � p(2ID) + � � �+ p(3ID � 1)In most situations, the probability of a triple error post-interleaving is negligible,so the performance of the RS decoder is determined by single and double errors.The probability that there are more than t symbol errors in an interleave isgiven in terms of q1 and q2 by the following formula (ref. [24]):Pdecoder(n; t; q1; q2) = bn=2cXj=0 n�2jXi=t+1�2j�n� jj ��n� 2ji �qi1qj2(1� q1 � q2)n�i�2j(9)Hence we can estimate the performance of ModConcat and StdConcat fromthe burst error distribution fbig. The symbol error rates can be found using(5) and (6), from which we can �nd the post-interleaving symbol error ratesusing (8), and then use (9) to calculate the decoder error-failure rates for bothconcatenation schemes.3.4 Other featuresIt is often possible to extract some information from the detector (such as aViterbi algorithm [8]) as to the reliability of the output bits. If we use thisinformation to perform soft-decision or erasure decoding of the Reed-Solomoncode, we can achieve improved performance.[6] With StdConcat and long blockcodes, however, it is usually di�cult to associate the reliability information fromthe detector with individual symbols, since the the demodulation process workson a block by block basis. With modi�ed concatenation, on the other hand, itis still possible to perform soft-decision decoding using reliability informationdirectly from the detector.Also, since the demodulation takes place after the RS decoder, then it ispossible to use the demodulation step as an extra check on the validity of theoutput from the RS decoder. (For a detailed analysis on the probability ofdecoder error, we refer to [17].) Suppose that we have a misdecoding by theRS decoder. There are then at least d = 2t + 1 errors in this output word.Making some rough approximations, we can �nd the probability of detecting10
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this miscorrection. If c is the capacity of the modulation constraint, then thereare about 2Sc codewords of length S, so the probability that a symbol error stillsatisifes the modulation constraint is approximately 2Sc2S = 2S(c�1). Then theprobability that at least one error violates the constraint is � 1� (2S(c�1))d.If we include a lossless compression step of rateKc=Nc (whereKc = S), thenwe see that there are 2Kc outputs (of length Nc) of the block decompressionstep, but only about 2cNc words which satisfy the constraint. hence there are2Kc � 2cNc \leftover" words which cannot be demodulated, so the probabilitythat a random error lead to a violation of the constraint is 12Kc (2Kc � 2cNc) =1�2cNc�Kc . Then the probability that at least one error violates the constraintis � 1 � (2Ncc�Kc)d. Note that for a long block code C1, c � K1N1 , so we getNcc �Kc � Kc(NcKc K1N1 � 1) = S( 1� � 1), and then the probability of detectionbecomes � 1 � 2S( 1��1)d. Hence, as we lower the expansion factor � downtowards 1, the probability of detection decreases to 0.4 Application to magnetic data storageAn application where modi�ed concatenation may prove useful is hard diskdrives. We consider some typical parameters: The data is organized into sectorsof 512 user bytes, and the Reed-Solomon code has symbol size S = 8, so thenumber of user bytes per interleave M � 512=ID is limited by M < 2S � 2t.Then we must have ID � 3. Also, ID should be large enough to disperse burstsinto di�erent interleaves. On the other hand, the performance of the ECC isdetermined largely by t, so that the amount of redundancy needed is roughly2t �ID, and to minimize the redundancy, ID should be kept as small as possible.The type of channel equalization which is employed will determine the appro-priate types of modulation constraints to use. For read channels which employpeak detection, it is important to prevent transitions from happening too closetogether, since that can result in intersymbol interference. This is accomplishedby using (d; k) RLL codes, with d � 1. Some well known examples are the (1; 7)code with rate 23 , and the (2; 7) code with rate 12 . In [11], Immink providesan e�cient construction for modulation block codes that are hundreds of bitslong, and can increase the modulation rate so that it approaches the capacityof the (d; k) modulation constraint. This provides a practical method to boostthe coding rate of systems which require this sort of RLL constraint.In recent years, there has been a shift of attention from peak detectionto more sophisticated signal processing techniques such as decision-feedbackequalization (DFE) and partial-response maximal likelihood (PRML) equaliza-tion techniques for magnetic data storage. The partial response techniques(which involve the Viterbi algorithm for maximum likelihood sequence detec-tion) show substantial improvement over the previous techniques, and are usedin numerous commercial hard disk drives. [5]. In particular, one common equal-ization is partial response class 4 (PR4), where the channel is equalized to a1 �D2 response, which can be treated as two interleaved binary dicode chan-11
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nels (1 � D). The d constraint can be 0, since partial response takes care ofthe ISI. In one implementation [22][27], a rate 89 block code is used with RLLconstraints (0; G=I) = (0; 4=4), which includes a runlength constraint on each1�D interleave as well as a global constraint, for the purpose of timing recovery.Here we look at two examples of codes for PR4, which illustrate the ex-ibility and improved performance allowed by modi�ed concatenation, even forrelatively short block lengths. For this and other partial response channels,the ability to use longer block lengths enables us to construct appropriate blockmodulation codes, including more sophisticated constraints such as higher orderspectral nulls or increased minimum distance. [23].4.1 A rate 16=17 code for PR4It is possible to construct modulation codes with rate 16=17 that satisfy a slightlyweaker (0; G=I) constraint than the rate 89 (0; 4=4) code mentioned above. If wesimply alternate uncoded bytes with codewords from the rate 8=9 code, therewill be no error propagation upon demodulation. In this case, it has beenshown [26] that more sophisticated code constructions can provide rate 16/17codes with better (0; G=I) constraints and no error propagation. However, whenthe strength of the (0; G=I) constraint means that error-propagation cannotbe avoided, there will be bene�ts to employing modi�ed concatenation. Forsimplicity, we will demonstrate these bene�ts using a rate 1617 code where errorpropagation causes two bytes to be in error.Let us suppose we have two modulation codes which satisfy a (0; G=I) con-straint with rateK1=N1 = 16=17 andK2=N2 = 8=9. (Note that the choice ofK1as a multiple of S is useful for StdConcat, but irrelevant to ModConcat.) Sincethe rate is so close to 1, it will not be necessary to use a lossless compressionstep, so Kc = Nc = S.Then for StdConcat with ID = 3, we have 170; 170 and 172 user bytes ineach interleave (where we chooseM even to accommodate the modulation code,where K1 = 2S). Let us suppose the error-correction capability of the ECC ist = 3 errors per interleave, so the length of the RS code is n = k + 2t forStdConcat, so the total number of bytes is 178 + 176 + 176 = 530. Then thereare a total of 530 � S � N1K1 channel bits per sector. For ID = 4 interleaves persector, we have M = 128 user bytes per interleave, so for StdConcat, we haven = 128 + 6 = 134 and ID � n � S � N1K1 channel bits. Note that this requires anadditional 2t parity symbols per sector, along with an additional Reed-Solomondecoding.For ModConcat, we can modulate all the user bytes �rst, and then addparity, to get k0 = 1S�ID �l ID�M�SK1 mN1� bytes per interleave, and a total ofl ID�M�SK1 mN1 + ID � 2t � N2 channel bits. For ID = 3, we get k0 = 181 for 2interleaves and 182 for one interleave, and for ID = 4, we get k0 = 136.
12
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16/17 code RS input RS output Bits/Sector Rate % of Max.Std ID = 3 k = 170; 172 n = 176; 178 4505 0:9092 100%Mod ID = 3 k0 = 181; 182 n0 = 187; 188 4514 0:9074 99:8%Std ID = 4 k = 128 n = 134 4556 0:8990 98:9%Mod ID = 4 k0 = 136 n0 = 142 4568 0:8967 98:6%The rate listed in the table is given by # user bits# channel bits and includes both themodulation and ECC. The maximum rate possible under these assumptions is1617 512512+18 = 0:9092.Using our earlier analysis and formulas, we can compare the ModConcatand StdConcat schemes using only the distribution of the bit errors out of thedetector. Based on the expected minimum distance error events on the two1 �D channels which make up the PR4 channel, we can take as our bit errordistribution, b(z) = b � ( 12z3 + 14z5 + 18z7 + � � �), where b is the probability ofan error event. In Figure 4, we see that StdConcat requires 4 interleaves whileModConcat requires only 3 interleaves, and ModConcat always outperformsStdConcat.In Figure 5, we suppose that the errors on the channel are all exactly oflength L, with probability bL = bL , so that the overall bit error rate is �xedat b = 10�5. The decreasing error rate as L increases is due to the smallerprobability of error as L increases, and the sudden upward jumps are due to theloss in performance as it becomes possible that a single error event causes two(or more) errors in a single interleave.4.2 A DC-free code for PR4For partial response channels, it is known that matched-spectral null (MSN)codes can provide signi�cant coding gain [12]. For the 1 � D channel, DC-free codes, which are balanced in the number of ones and zeros, are matchedto the spectrum and provide approximately 3 dB coding gain. We can treatthe PR4 channel as two completely independent 1�D channels and modulateappropriately.One method of satisfying these DC-free constraints e�ciently is to use blockmodulation codes with long length. The design and use of DC-constrainedblock codes is discussed at length in [10]. It should be noted that our analysisof error propagation assumes a simple detector, which does not depend on themodulation code, so our analysis may not accurately describe the situation ofdetection using a time-varying trellis [20][21] or of post-processing schemes [14],for DC-free block codes, but the general conclusions about modi�ed concatena-tion should be the same.Let us consider a hypothetical modulation constraint consisting of 10-bitblocks which are DC-free. There are �105 � = 252 DC-free words of length 10,and concatenating these words provides a data rate of 110 log2 252 = 0:7977bits per symbol. However, encoding one 10-bit DC-free word at a time would13
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only provide a data rate of 110 blog2 252c = 0:7. To get closer, Gelblum andCalderbank [7] provide an example of a generalized cross-constellation method,which groups four of these 10-bit words together to obtain a rate 31=40 = 0:775code, utilizing 240 of the 252 available codewords. Let us take this code as C1,with K1=N1 = 31=40. Notice that this construction allows for a very simplelossless compression scheme, where we simply map each of the 252 possible 10-bit DC-free words to a di�erent 8-bit word (leaving four 8-bit words unassigned),so we have Kc=Nc = 8=10.To complete our use of modi�ed concatenation, we need to �nd a modulationcode for the parity bits, where K2 = S = 8. Since log2 �116 � > 8, one possiblechoice is a code of rate K2=N2 = 8=11, , where we alternate between a wordwith 6 ones and 5 zeros, and a word with 5 ones and 6 zeros. For the sake ofthis example, we will be exible and say that the performance of this constraintis indistinguishable from being DC free over every block of 10 bits.We then have the following alternatives:� StdConcat with code C2, with rate K2=N2 = 8=11 = 0:7272.� StdConcat with code C1, with rate K1=N1 = 31=40 = 3140 = 0:775. (Errorpropagation occurs.)� ModConcat with code C1 on the message portion, and C2 on the parityportion, along with a lossless compression code of rate Kc=Nc = 8=10.The rate is K1=N1 = 0:775 on the message portion.Suppose we use ID = 4, so the number of user bytes per interleave isM = 128. For StdConcat, the number of channel bits is � ID�n�SK �N for a codeof rate K=N . Meanwhile, for ModConcat,we have a total of l ID�M�SK1 m = 133modulation blocks of four 10-bit words, which get compressed into 4 bytes.Hence, we have k0 = 1S�ID �l ID�M�SK1 mN1� KcNc = 133 message bytes per inter-leave, and the number of channel bits is given by l ID�M�SK1 mN1 + ID � 2t �N2 =133 � 40 + 264 = 5584:DC-free code, ID = 4 RS input RS output Bits/sector Rate % of Max.StdConcat with C2 = 811 k = 128 n = 134 5896 0:6947 91:1%StdConcat with C1 = 3140 k = 128 n = 134 5560 0:7367 96:7%ModConcat with C1, C2 k0 = 133 n0 = 139 5584 0:7335 96:3%For the \maximum" possible rate for this situation, we use ( 110 log2 252) 128134 =0:762.In Figure 6, we plot the performance of these three schemes, where we modelthe straightforward Viterbi detection scheme for the 1�D channel with an errordistribution of b (z) = b � ( 12z2 + 14z3 + 18z4 + � � �), but the error characteristicsmay be di�erent with other detection schemes. Then we see that ModConcatperforms almost the same as StdConcat with C2, while StdConcat with C1su�ers greatly due to error propagation. Hence using modi�ed concatenation, we16
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can implement the generalized cross constellation code C1 and achieve the sameperformance as a StdConcat with C2, thereby increasing the overall coding rate.This example also demonstrates how a lossless compression step can be e�ectivein keeping down the size of the Reed-Solomon code, so that the expansion factorin this case is only � = N1K1 KcNc = 1:032.5 ConclusionWe have considered a system comprising a simple detector and a block codeconcatenated with a Reed-Solomon code. We have analyzed performance ofboth standard and modi�ed concatenation in terms of the parameters S, K1N1 ,K2N2 , KcNc , M , and t, and the bit error distribution fbig out of the detector.We considered magnetic data storage and showed that for two examplesrelevant to PRML in hard disk drives, modi�ed concatenation performs betterthan standard concatenation. For a rate 1617 modulation code and 8-bit Reed-Solomon code, modi�ed concatenation permits the use of three interleaves persector, whereas standard concatenation requires four interleaves for good per-formance. Also, we showed how modi�ed concatenation allows the practicalimplementation of a DC-free block code of length 40. In general, this techniqueallows the use of codes whose rates approach the capacity of the constraint,without a loss in performance.It should be noted that this modi�ed concatenation scheme also solves theerror-propagation problem for sliding-window encoders, as well as long blockcodes, in concatenated systems. These ability to use sophisticated, high ratemodulation codes may prove useful for many applications in data storage, suchas hard disk drives, optical discs and digital video tape recorders. [15]. Theco-design of modulation codes and block codes for lossless compression posesan interesting challenge. In addition, the bene�ts of erasure decoding, which isfacilitated by modi�ed concatenation, deserve to be explored.6 AcknowledgementsThe authors would like to express thanks to E.A.Gelblum, J.T.Gill, K.A.S. Im-mink, A. Patapoutian, and E. Soljanin for discussions related to this topic. Theyalso thank J. Sonntag, N. Sayiner and AT&T Microelectronics (now Lucent) fortheir support and encouragement. The helpful comments from the anonymousreviewers were also greatly appreciated.References[1] K.A.S. Abdel-Gha�ar, M. Blaum, and J. Weber, \Analysis of CodingSchemes for Modulation and Error Control," IEEE Trans. Inform. The-ory, vol. 41, no. 6, Nov. 1995, pp. 1955-1968.18
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