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Abstract

When block modulation codes are concatenated with an error-correction
code (ECC) in the standard way, the use of long block lengths results in
error-propagation. This paper analyzes the performance of modified con-
catenation, which involves reversing the order of modulation and ECC.
This modified scheme reduces error propagation, provides greater flexibil-
ity in the choice of parameters, and facilitates soft-decision decoding, with
little or no loss in transmission rate. In particular, examples are presented
which show how this technique can allow fewer interleaves per sector in
hard disk drives, and permit the use of sophisticated block modulation
codes which are better suited to the channel.

Index terms: concatenated codes, Reed-Solomon codes, modulation
codes, magnetic data storage

1 Introduction

This paper is concerned with the interaction between the modulation code and
the error-correcting code (ECC). The idea of modulation is to ensure that the
sequence of bits transmitted to the channel satisfies certain properties, which we
will refer to as the modulation constraint. The purpose of the error-correcting
code is to introduce redundancy so that it is possible to correct random errors
in the codeword. Some widely used ECCs are Reed-Solomon codes, where the
data is organized into symbols, and there are well-known efficient algorithms to
correct symbols in error. By simply concatenating the modulation code with
the ECC, the overall performance of a system can often be greatly improved.

*This work was supported in part by AT&T Bell Laboraties
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Much of the previous work on combining modulation and ECC has been
concerned with (d, k) runlength constraints, along with the correction of a bit
shift or a single bit error, which addresses the technology of peak-detection
in magnetic recording. A number of these papers ([2][9][13][18][19]) present
combined modulation and ECC schemes in which the message is first modulated,
and an appropriate set of modulated parity bits is appended using a systematic
encoding algorithm.

In this paper, we consider the standard method of concatenation, which we
will refer to as StdConcat, and compare it with a modification which better
suits the use of block modulation codes in conjunction with ECCs. In [3] and
[1], comparisons are made between the use of block codes and sliding window
(including convolutional) encoders to implement modulation constraints. Block
codes perform favorably when the number of bits matches the Reed-Solomon
symbol size, but if the block modulation codes have long blocklengths, then
error-propagation results. This motivates us to consider a scheme in which
the message is first modulated, and then fed into a systematic RS encoder,
which generates parity that is then modulated. This idea, which we refer to as
the modified concatenated coding (ModConcat) scheme, has appeared before in
papers by Bliss [4] and Mansuripur [16]. Recently, Immink [11] has proposed
the insertion of a lossless compression step, which improves the efficiency of the
scheme.

We discuss these concatenation schemes in detail, and then present an anal-
ysis of error-propagation and decoder performance using the two schemes. Fi-
nally, we will consider an application to modulation codes for magnetic record-

ing.

2 Concatenation Schemes

The modulation code is implemented using a binary block code of rate K/N,
where the modulated blocks (of length V) all satisfy the modulation constraint
(such as a constraint on the run-length or on the DC content), and in addition
maintain the constraints when modulation blocks are arbitrarily placed side by
side. The modulation code can be described by a look-up table consisting of 2%
words of N bits.

The Reed-Solomon code uses S-bit symbols, can correct up to ¢ symbol
errors, and is encoded with a systematic encoder that takes k£ message symbols
and appends 2t parity symbols to obtain a codeword of length n = k + 2¢.

2.1 Standard concatenation

The standard method of concatenated coding firmly sandwiches the modulation
code between the encoder and decoder for the Reed- Solomon code, as we see
in Figure 1. Starting with M message symbols of S bits each, we encode to
obtain M + 2t symbols, which are modulated into % (M + 2t)S bits of data

sent through the channel, so the transmission rate is % % (Note that in the
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Figure 1: Standard Concatenated Coding

figures, we omit the details of the interleaving which takes place between the
inner and outer codes.)

We assume that a single error event in a block of N bits results in the
entire block becoming corrupted upon demodulation. Hence a short error on
the channel can propagate into [ K/S| symbol errors, and a short error burst on
the boundary of two blocks can even result in [2K/S] symbol errors. To reduce
this error-propagation, it makes sense to choose K to match the symbol size S,
so that we would want K to be an integral multiple of S. To avoid this error
propagation due to demodulation, it would be ideal to choose K = S | but this
severely restricts the type of modulation code we can use.

For the same modulation constraint, let us suppose we have two suitable
modulation codes C; and Cy: The first modulation code C; has rate %, where
the block length are long so that K; > S. The second modulation code Cy
has rate %, where Ky = S to avoid error-propagation. We would prefer to
use a code like C7, which has a longer block length and hence a higher rate
(% > K23 But since C; magnifies errors by a factor of K;/S, it is often the

N2
case that a code like Cy, with Ky = S, is used in practice.

2.2 Modified concatenation

In standard concatenation, the demodulation step leads to error-propagation
so it is desirable to delay demodulation until after the Reed-Solomon decoder,
where the data which is almost entirely error-free. By reversing the order of the
modulation and error-correcting codes, it will be possible to use a modulation
code with long block length.

In the top half of Figure 2, we depict the modified concatenated coding
scheme, which may be attributed to Bliss [4]. The number of user symbols
M can be freely chosen, but for comparison, let us choose M to be the same
as in StdConcat. Starting with M user symbols of S bits each, we modulate
these into %MS bits using code C4, and transmit these over the channel.
Meanwhile, we pass these modulated messages into a systematic Reed-Solomon
encoder that adds 2t parity-check symbols, for a total of %M + 2t symbols
in the RS codeword. The parity symbols need to be modulated before being
sent to the channel, and to avoid error-propagation, we will use the code Cs,
with rate Ko/Ns, giving a total of (%M+ %215)5 bits transmitted through the

channel. This is fairly close to the ﬁ—i(M + 2t)S channel bits using StdConcat

with code Cy, and is much smaller than the %(M +2t)S bits using StdConcat
with code C,.
No error-propagation has taken place on the message bits, so that the code
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Figure 2: Modified Concatenated Coding

C1 can have arbitrary block lengths, and in particular, K; and S need not match.
Also, no error propagation takes place on the parity portion since we are using
code Cy which has Ky = S. Moreover, all the data reaching the channel satisfies
the modulation constraint, and the rate is very close to the rate of Cy. Figure 3
illustrates how ModConcat can be successfully used in cases where StdConcat
would lead to decoder overflow due to error-propagation with a code like C;.
On the other hand, this method suffers from an expansion of the input to the
Reed-Solomon code. We have k' = %M and n' = %M+2t for ModConcat, so

there is an a = % > 1 increase in the input to the RS decoder, and a factor of
n' _ aM+2t

W = Sii33; ~ « increase in the codeword length, as compared with StdConcat
using code C;. Some problems are that the complexity of RS decoding roughly
increases linearly by «a, and the length of Reed-Solomon codewords is limited
(n' < 2%). In addition, very long error bursts are not demodulated, so that
relative to StdConcat, ModConcat expands long error bursts by a. In other
words, if we ignore error-propagation effects, then a bit burst of length LS on
the channel affects roughly L symbols in ModConcat, but only %é = L[ using

StdConcat. ¢

2.3 Lossless compression

In [11], Immink considers this problem and proposes a method to reduce this
expansion factor a. The idea is to introduce a block code of rate K./N,. which
acts as a lossless compression scheme (taking N, bits to K. bits) and is placed
before the Reed-Solomon encoder and the decoder, as shown in the bottom half
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Figure 3: A Comparison of the Concatenation Schemes

of Figure 2. Since the compression step takes place before RS decoding, we need
to choose K. = S to avoid error propagation. The expansion factor a is reduced
to ﬁ—i g, and Immink’s lossless compression alleviates the problems associated
with using modified concatenation where %—i is not close to 1.

The N_-bit sequences which are valid inputs to the block compression scheme
must include all the possible outputs of the modulation scheme. To understand
better the requirements of this lossless compression block code, it will help
to take a closer look at modulation using block codes. Let the set Constr
consist of all bi-infinite sequences of bits which satisfy the modulation constraint.
The capacity of the constraint is the maximum number of information bits per
channel bit that can be acheived while satisfying this constraint, and is given
by nh_)n;o % log, W,,, where W,, is the number of constrained sequences of length

The idea of block modulation is to use an encoder that takes K bit to NV
bits, such that the output bitstream satisfies the constraints. In other words,
the desired block code corresponds to a 1-1 map

@ :{0,1}% = {0, 1}V

where any combination of words in the image of ¢ will satisfy the modula-
tion constraint. Let Imy be the image of the mapping ¢, and (Imp)>® =
{(ccyw_1,wp,wr,...) | w; € Imp C {0,1}¥}. Then a modulation block code
satisfies:

www.manharaa.com




Modulation: (Im ¢)> C Constr

In other words, any bi-infinite sequence of bits consisting of blocks of length N
in the image of ¢ will satisfy the modulation constraint. The rate K/N will be
less than or equal to the capacity of the modulation constraint.

Now, for lossless compression, we need to find a 1-1 map

¥ {0,135 = 0,1}

such that the image contains all possible sequences that can appear in the output
of the modulation code. In other words, we want a map ) such that:

(Tm)> 5 (Im )=

The map 9!, restricted to Im, gives a lossless compression map, and the
map Y gives the decompression. This mapping ¢ defines a block code of rate
K./N.. Note that it is clear that K./N. > K/N, since we cannot compress
a code smaller than its original size. For a given modulation constraint, it
may be appropriate to develop block compression codes in conjunction with the
modulation code. For example, it might make sense for N to be an integer
multiple of N,.

But since the modulation code C is assumed to be sufficiently long to make
the rate close to the capacity of the constraint, it is often reasonable to assume
the compression scheme to handle all possible valid constrained sequences, so
we would want

Compression: (Im)> D Constr

In this sense, there is a certain duality between the concepts of block modulation
and block compression.

3 Analysis of performance

We recall that using standard correction techniques, the Reed-Solomon decoder
decodes the received word to a codeword lying within Hamming distance ¢, if
such a codeword exists. In the usual terminology (ref. [25]), when no codeword
exists within distance ¢, this detectable malfunction is called decoder failure.
If the decoder outputs a wrong decision because the received word lies within
distance t of the wrong codeword, this event is called decoder error. In this
section, we will simply measure performance by the probability of having more
than ¢ symbol errors in a received word. This is the sum of decoder failure rate
and the decoder error rate, which we will denote by Pyecoder-

We first consider the case where the bit errors are independent, and inter-
leaving is sufficient to separate bursts of symbol errors. Then we take a closer
look at the process of error propagation, and finally consider the case where
bursts lengths exceed the interleave depth.
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3.1 Decoder performance, with independent errors

First we consider a Reed-Solomon decoder where the symbol errors occur in-
dependently, which is also the case if the bursts are sufficiently dispersed by
interleaving. With independent errors, the expected number of errors is bino-
mially distributed, with the probability of having a errors given by (”)p =

a
(Z)p“(l —p)" ™", where p is the symbol error rate. The probability of a decoder
error or decoder failure is then given by

Pyecoder(n: t,p) = i_z:] C)p = i_z; (?)pi(l -p)" (1)

for a t-error-correcting RS decoder. For small p and large n, this summation

is dominated by the first term (tzl)p, and the Poisson approximation to the
binomial distribution, (Z) & e’””M R~ M, gives a rough estimate of
p a: a:

performance.

We can then compare the performance of the two concatenation methods
using code C; given that the errors are single bit errors occuring independently
with probability b. For StdConcat, an error bit in any of N bits in a block can
corrupt the block, and the probability of symbol error is equal to the block error
probability p:ty"fnhol = pitd . = N1b. (We assume that interleaving has dispersed

the burst of % symbol errors that occur when a block is in error.) On the
other hand, for ModConcat, each of S bits can cause a symbol to be in error,

SO p?}‘,‘;gbol = Sb. Hence for independent errors, the symbol error probabilities
p= p:;fnbol and p' = p;‘;‘l)fhol are related by
S

'~ — 2

P D (2)

Now if we assume the same amount of user data per codeword, then we need

to increase the code length for ModConcat to n' = %(n — 2t) + 2t ~ %n

We can then use the Poisson approximation to compare the performance of
StdConcat and ModConcat as follows:

' 1 Ny 8 N\
Pmod ~ n ~ -1 R
decoder (t + 1) ” (t T 1)| <(K1 n)(Nl p)

S n S
~ M ON(E+1) ~ (t+1)Pstd 3
(Kl ) <t + 1) ) (Kl ) decoder ( )

This rough calculation indicates that the amount which ModConcat can be
expected to perform better than StdConcat depends on the ratio S/K; and the
strength of the RS decoder.

It is interesting to note that if we consider ModConcat with a lossless
compression scheme, the result does not change. For a lossless compression
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block code of rate K./N. and K. = S, we get p:;,‘:rf‘bol = &Sb = N.b. Also,

KN1
. K1

n, so we end up with the same approximate rela‘rlonshlp

1 K.N, . N, \'*
prod o~ —((——1n><—p>)

n' =~ an =

decoder (t + 1)| Nc Kl Nl
S
~ (Kl )(t+1)P§ggoder

3.2 Error propagation

For standard concatenation, let us examine the number of block errors caused
by demodulating a burst of error bits with a block code of rate K/N. A single
bit in error affects one block. Two adjacent bits in error have a NNl chance of
causing one block error and a N chance of overlapping two blocks. overlapping
two blocks. Given non-negative integers a and b, define m(a, b) by 0 < m(a, b) <
b—1 and m(a,b) = a (modb). Then in general, a burst of length L bits

m(L—1,N)
N

has a probability of causing [ J + 1 block errors and probability

1- w of causing [ | + 2 block errors. (In the middle of a burst there
may be bits not in error, but we assume that the burst begins and ends with
error bits, and there are enough error bits in between to cause a contiguous
burst of block errors.)

Let b;, denote the probability of observing a burst error of length L, which
we find by taking the number of bursts of length L and dividing by the total
number of bits. The bit error distribution is then described by {b;} and the
average bit error rate is b = 3 ib;. It is reasonable to assume that the locations
of the burst errors are uniformly distributed in the block, and that for a block
of N channel bits long, there are IV chances that it contains the start of a burst
error. As for the number of blocks affected, we argue that a burst of length

L has a probability M of causing [ J + 1 block errors and probability

1-— w of causing L J + 2 block errors, and that the effect of bursts of
different lengths is additive. (Note that by our convention, if two bursts overlap,
then they are counted as a single burst.)

Then we have the following expression for pyiock(m), the probability that a

particular block is the start of a burst of m consecutive blocks in error:

st.d N -1 N —2 1
pbtlgck(l) = N(bl +b2 N —|—b3 N ++bNN)
N N
Phiock(m) = D bm-oynsili = 1)+ D bm nynsi(N =i +1)
=2 i=1

If we use a generating function to express the error distribution b(z) = 3°,_, b;z",
then we have the compact expression:

Phiacc(m) = (AN (2)b(2)) (14 (m-1)n) (4)
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where Ay (z) is a triangular function

An(z) =2 WD 42, N2 L . L (N 1)z ' 4+ N+ (N =1z +--- 42NV
and the subscript indicates we are taking the coefficient of z'T(m=DN in the
product An(2)b(z)).

3.2.1 Standard Concatenation

For StdConcat with C;, we have

d
p;tlock(m) = (AN1 (Z)b(z))(1+(mfl)N1)
and since a block error causes % symbol errors (where we will assume for
simplicity that K is a multiple of S), the probability that a symbol is the start
of a burst of m symbol errors is

td _ td m . . .
Piymbol(M) = pi]ock(m) if m is a multiple of K;/S (5)
pz;(;lnbol(m) = 0 otherwise

In terms of generating functions, we have

S
p:;(linbol(z) = p?)tlgck(ZKl/ )

3.2.2 Modified Concatenation

For simplicity, we will only look at error propagation in the message, since the
fraction of parity bits is small, and there is limited error propogation because of
the code Cy ( where Ky = S) that modulates parity bits. If we assume that a
lossless compression code of rate K./N, is used (where K. = S), then we obtain
the following symbol error distribution in terms of b(z):

pé?r?r?bol(m) = (An.(2)b(2))(14(m-1)N.) (6)
N, N.
= D bm-zyneili = 1)+ Y bmonyni(Ne —i+1)
=2 i=1

(In the case that there is no lossless compression step, simply let N, = S.)

3.3 Decoder performance, with burst errors

The Reed-Solomon codewords are usually interleaved to reduce the possibility
that a single burst error leads to multiple symbol errors in the same codeword.
Let us assume that the interleave depth is ID. Then a burst of L symbols

m(L,ID) . L . .
—7p — causing LﬁJ error(s) in an interleave and

has a probability of 1 —

oye m(L,ID
probability of %

of causing [ error(s) in an interleave. Hence, if p(m)
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is the probability, before interleaving, of a symbol burst of length m, then we
can evaluate the probability ¢(m) of a burst of length m after interleaving by

q(m) = (Arp(2)p(2))miD (7)

where we use the generating function p(z) = ", _, p(m)z™ and the same tri-
angular function as before. Note that the average symbol error rate stays the
same (3 mg(m) = 3 mp(m)).

In particular, the probabilities of single errors (g;) and double errors (g2)
after interleaving are

e = p(1)+2p(2)+---+ID-p(ID)+---+p(2ID —1) (8)
G = p(ID+1)+2p(ID+2) +--+ 1D - p(2ID) + -+ p(3ID — 1)

In most situations, the probability of a triple error post-interleaving is negligible,
so the performance of the RS decoder is determined by single and double errors.

The probability that there are more than ¢ symbol errors in an interleave is
given in terms of ¢; and ¢y by the following formula (ref. [24]):

[n/2]  n-2j (

Pdecoder(nat:q17q2) = Z Z

n- J) <77 ‘2J> Gl —q—go) Y
i=0 =125 N 7 !

(9)

Hence we can estimate the performance of ModConcat and StdConcat from

the burst error distribution {b;}. The symbol error rates can be found using

(5) and (6), from which we can find the post-interleaving symbol error rates

using (8), and then use (9) to calculate the decoder error-failure rates for both

concatenation schemes.

3.4 Other features

It is often possible to extract some information from the detector (such as a
Viterbi algorithm [8]) as to the reliability of the output bits. If we use this
information to perform soft-decision or erasure decoding of the Reed-Solomon
code, we can achieve improved performance.[6] With StdConcat and long block
codes, however, it is usually difficult to associate the reliability information from
the detector with individual symbols, since the the demodulation process works
on a block by block basis. With modified concatenation, on the other hand, it
is still possible to perform soft-decision decoding using reliability information
directly from the detector.

Also, since the demodulation takes place after the RS decoder, then it is
possible to use the demodulation step as an extra check on the validity of the
output from the RS decoder. (For a detailed analysis on the probability of
decoder error, we refer to [17].) Suppose that we have a misdecoding by the
RS decoder. There are then at least d = 2t + 1 errors in this output word.
Making some rough approximations, we can find the probability of detecting

10
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this miscorrection. If ¢ is the capacity of the modulation constraint, then there
are about 25¢ codewords of length S, so the probability that a symbol error still
satisifes the modulation constraint is approximately 2215 = 25(c=1) " Then the
probability that at least one error violates the constraint is ~ 1 — (25(¢=1))4,
If we include a lossless compression step of rate K./N. (where K. = S), then
we see that there are 2%¢ outputs (of length N,) of the block decompression
step, but only about 2°V¢ words which satisfy the constraint. hence there are
2Ke _ 9¢Ne “leftover” words which cannot be demodulated, so the probability
that a random error lead to a violation of the constraint is %(2Kc —20Ne) =
1—2¢Ne=Ke Then the probability that at least one error violates the constraint
is ~ 1 — (2Nee=Ke)d Note that for a long block code Cy, ¢ ~ %—i, so we get

Nee— K, = Kc(g ﬁ—; -1) = S(é — 1), and then the probability of detection

becomes ~ 1 — 25(z-1)d, Hence, as we lower the expansion factor a down
towards 1, the probability of detection decreases to 0.

4 Application to magnetic data storage

An application where modified concatenation may prove useful is hard disk
drives. We consider some typical parameters: The data is organized into sectors
of 512 user bytes, and the Reed-Solomon code has symbol size S = 8, so the
number of user bytes per interleave M ~ 512/ID is limited by M < 29 — 2¢.
Then we must have ID > 3. Also, I D should be large enough to disperse bursts
into different interleaves. On the other hand, the performance of the ECC is
determined largely by ¢, so that the amount of redundancy needed is roughly
2t-ID, and to minimize the redundancy, I D should be kept as small as possible.

The type of channel equalization which is employed will determine the appro-
priate types of modulation constraints to use. For read channels which employ
peak detection, it is important to prevent transitions from happening too close
together, since that can result in intersymbol interference. This is accomplished
by using (d, k) RLL codes, with d > 1. Some well known examples are the (1,7)
code with rate 2, and the (2,7) code with rate 1. In [11], Immink provides
an efficient construction for modulation block codes that are hundreds of bits
long, and can increase the modulation rate so that it approaches the capacity
of the (d, k) modulation constraint. This provides a practical method to boost
the coding rate of systems which require this sort of RLL constraint.

In recent years, there has been a shift of attention from peak detection
to more sophisticated signal processing techniques such as decision-feedback
equalization (DFE) and partial-response maximal likelihood (PRML) equaliza-
tion techniques for magnetic data storage. The partial response techniques
(which involve the Viterbi algorithm for maximum likelihood sequence detec-
tion) show substantial improvement over the previous techniques, and are used
in numerous commercial hard disk drives. [5]. In particular, one common equal-
ization is partial response class 4 (PR4), where the channel is equalized to a
1 — D? response, which can be treated as two interleaved binary dicode chan-

11
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nels (1 — D). The d constraint can be 0, since partial response takes care of
the ISL In one implementation [22][27], a rate & block code is used with RLL
constraints (0, G/I) = (0,4/4), which includes a runlength constraint on each
1— D interleave as well as a global constraint, for the purpose of timing recovery.

Here we look at two examples of codes for PR4, which illustrate the flex-
ibility and improved performance allowed by modified concatenation, even for
relatively short block lengths. For this and other partial response channels,
the ability to use longer block lengths enables us to construct appropriate block
modulation codes, including more sophisticated constraints such as higher order

spectral nulls or increased minimum distance. [23].

4.1 A rate 16/17 code for PR4

It is possible to construct modulation codes with rate 16/17 that satisfy a slightly
weaker (0, G/I) constraint than the rate 3(0,4/4) code mentioned above. If we
simply alternate uncoded bytes with codewords from the rate 8/9 code, there
will be no error propagation upon demodulation. In this case, it has been
shown [26] that more sophisticated code constructions can provide rate 16/17
codes with better (0, G/I) constraints and no error propagation. However, when
the strength of the (0,G/I) constraint means that error-propagation cannot
be avoided, there will be benefits to employing modified concatenation. For
simplicity, we will demonstrate these benefits using a rate % code where error
propagation causes two bytes to be in error.

Let us suppose we have two modulation codes which satisfy a (0,G/I) con-
straint with rate K; /Ny = 16/17 and Ky /N, = 8/9. (Note that the choice of K
as a multiple of S is useful for StdConcat, but irrelevant to ModConcat.) Since
the rate is so close to 1, it will not be necessary to use a lossless compression
step, so K. =N, = S.

Then for StdConcat with ID = 3, we have 170,170 and 172 user bytes in
each interleave (where we choose M even to accommodate the modulation code,
where K7 = 2S5). Let us suppose the error-correction capability of the ECC is
t = 3 errors per interleave, so the length of the RS code is n = k + 2t for
StdConcat, so the total number of bytes is 178 + 176 + 176 = 530. Then there
are a total of 530 - S - % channel bits per sector. For ID = 4 interleaves per
sector, we have M = 128 user bytes per interleave, so for StdConcat, we have
n=1284+6 =134 and ID -n-S - %—1 channel bits. Note that this requires an
additional 2¢ parity symbols per sector, along with an additional Reed-Solomon

decoding.
For ModConcat, we can modulate all the user bytes first, and then add
parity, to get k' = S_]ID ([Iij\f'S—‘ Nl) bytes per interleave, and a total of

[ 1228 | Ny + 1D - 2t Ny channel bits. For 1D = 3, we get k' = 181 for 2

interleaves and 182 for one interleave, and for ID = 4, we get k' = 136.

12
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16/17 code RS input RS output Bits/Sector | Rate % of Max.
StdID=3 | k=170,172 | n=176,178 | 4505 0.9092 | 100%
Mod ID =3 | k' = 181,182 | n' = 187,188 | 4514 0.9074 | 99.8%
Std ID =4 | k=128 n =134 4556 0.8990 | 98.9%
Mod ID =4 | k' =136 n' =142 4568 0.8967 | 98.6%

# user bits

The rate listed in the table is given by Fehannel bits and includes both the
modulation and ECC. The maximum rate possible under these assumptions is
18512 — 0.9092.

17 512418

Using our earlier analysis and formulas, we can compare the ModConcat
and StdConcat schemes using only the distribution of the bit errors out of the
detector. Based on the expected minimum distance error events on the two
1 — D channels which make up the PR4 channel, we can take as our bit error
distribution, b(z) = b- (32® + $2° + 27 4+ --), where b is the probability of
an error event. In Figure 4, we see that StdConcat requires 4 interleaves while
ModConcat requires only 3 interleaves, and ModConcat always outperforms
StdConcat.

In Figure 5, we suppose that the errors on the channel are all exactly of
length L, with probability b, = %, so that the overall bit error rate is fixed
at b = 107°. The decreasing error rate as L increases is due to the smaller
probability of error as L increases, and the sudden upward jumps are due to the
loss in performance as it becomes possible that a single error event causes two

(or more) errors in a single interleave.

4.2 A DC-free code for PR4

For partial response channels, it is known that matched-spectral null (MSN)
codes can provide significant coding gain [12]. For the 1 — D channel, DC-
free codes, which are balanced in the number of ones and zeros, are matched
to the spectrum and provide approximately 3 dB coding gain. We can treat
the PR4 channel as two completely independent 1 — D channels and modulate
appropriately.

One method of satisfying these DC-free constraints efficiently is to use block
modulation codes with long length. The design and use of DC-constrained
block codes is discussed at length in [10]. It should be noted that our analysis
of error propagation assumes a simple detector, which does not depend on the
modulation code, so our analysis may not accurately describe the situation of
detection using a time-varying trellis [20][21] or of post-processing schemes [14],
for DC-free block codes, but the general conclusions about modified concatena-
tion should be the same.

Let us consider a hypothetical modulation constraint consisting of 10-bit
blocks which are DC-free. There are (150) = 252 DC-free words of length 10,
and concatenating these words provides a data rate of 11—010g2 252 = 0.7977
bits per symbol. However, encoding one 10-bit DC-free word at a time would
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Figure 4: Performance comparison for the 16/17 code
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Performance for 16/17 code ID=3
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Figure 5: A comparison of the effects of long bursts for the 16/17 code
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only provide a data rate of 11—0 |log, 252] = 0.7. To get closer, Gelblum and
Calderbank [7] provide an example of a generalized cross-constellation method,
which groups four of these 10-bit words together to obtain a rate 31/40 = 0.775
code, utilizing 240 of the 252 available codewords. Let us take this code as C1,
with K;/N; = 31/40. Notice that this construction allows for a very simple
lossless compression scheme, where we simply map each of the 252 possible 10-
bit DC-free words to a different 8-bit word (leaving four 8-bit words unassigned),
so we have K./N,. = 8/10.

To complete our use of modified concatenation, we need to find a modulation
code for the parity bits, where Ko = S = 8. Since log, (]61) > 8, one possible
choice is a code of rate Ky/Ny = 8/11, , where we alternate between a word
with 6 ones and 5 zeros, and a word with 5 ones and 6 zeros. For the sake of
this example, we will be flexible and say that the performance of this constraint
is indistinguishable from being DC free over every block of 10 bits.

We then have the following alternatives:

e StdConcat with code Cs, with rate K»/N, = 8/11 = 0.7272.

e StdConcat with code Cy, with rate K;/N; = 31/40 = % = 0.775. (Error
propagation occurs.)

e ModConcat with code C; on the message portion, and C5 on the parity
portion, along with a lossless compression code of rate K./N. = 8/10.
The rate is K1 /N; = 0.775 on the message portion.

Suppose we use ID = 4, so the number of user bytes per interleave is
M = 128. For StdConcat, the number of channel bits is {%] N for a code

of rate K/N. Meanwhile, for ModConcat,we have a total of [%-I =133
modulation blocks of four 10-bit words, which get compressed into 4 bytes.

Hence, we have k' = S% ([%-‘ Nl) ﬁ— = 133 message bytes per inter-

leave, and the number of channel bits is given by {%] N1+ 1D -2t-Ny =
133 - 40 + 264 = 5584.

DC-free code, ID =4 RS input | RS output | Bits/sector | Rate % of Max.
StdConcat with Cy = % k=128 | n=134 5896 0.6947 | 91.1%
StdConcat with C; = % k=128 | n=134 5560 0.7367 | 96.7%
ModConcat with C;, Cy | k' =133 | n’ =139 5584 0.7335 | 96.3%

For the “maximum” possible rate for this situation, we use ({5 log, 252)125 =
0.762.

In Figure 6, we plot the performance of these three schemes, where we model
the straightforward Viterbi detection scheme for the 1 — D channel with an error
distribution of b(z) = b- (32® + 72% + §2* + - --), but the error characteristics
may be different with other detection schemes. Then we see that ModConcat
performs almost the same as StdConcat with Cs, while StdConcat with C,
suffers greatly due to error propagation. Hence using modified concatenation, we
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www.manaraa.com



P_decoder

10 T T T T

Performance comparison for DC—free codes, ID=4

X standard 31/40
O modified 31/40
+ standard 8/11

-22 | | | |

4 4.5 5 55 6 6.5
-log10(b)

Figure 6: Performance comparison for DC-free codes
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can implement the generalized cross constellation code C; and achieve the same

performance as a StdConcat with Cy, thereby increasing the overall coding rate.

This example also demonstrates how a lossless compression step can be effective

in keeping down the size of the Reed-Solomon code, so that the expansion factor
N

in this case is only a = K—iﬁ = 1.032.

5 Conclusion

We have considered a system comprising a simple detector and a block code
concatenated with a Reed-Solomon code. We have analyzed performance of
both standard and modified concatenation in terms of the parameters S, %,

%, ﬁ M, and ¢, and the bit error distribution {b;} out of the detector.

We considered magnetic data storage and showed that for two examples
relevant to PRML in hard disk drives, modified concatenation performs better
than standard concatenation. For a rate % modulation code and 8-bit Reed-
Solomon code, modified concatenation permits the use of three interleaves per
sector, whereas standard concatenation requires four interleaves for good per-
formance. Also, we showed how modified concatenation allows the practical
implementation of a DC-free block code of length 40. In general, this technique
allows the use of codes whose rates approach the capacity of the constraint,
without a loss in performance.

It should be noted that this modified concatenation scheme also solves the
error-propagation problem for sliding-window encoders, as well as long block
codes, in concatenated systems. These ability to use sophisticated, high rate
modulation codes may prove useful for many applications in data storage, such
as hard disk drives, optical discs and digital video tape recorders. [15]. The
co-design of modulation codes and block codes for lossless compression poses
an interesting challenge. In addition, the benefits of erasure decoding, which is

facilitated by modified concatenation, deserve to be explored.
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